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1. Introduction

The gist of physics is in the unifying guideline of energy bound to its conservation and

transformations in the evolution of all things existent. The meaning of all is vague and better

determined via perception of phenomena through the energy exchange between systems given

by a function of their states. Such is the energy concept of mechanics by Euler and Lagrange

and that of equilibrium thermodynamics by Gibbs and more general statistics of states. This

energy concept has found ways in all pores of physics, but is limitted. Taking it for granted

leads to circular theories and fallacies.

Let us recall the forces called circulatory or vortex with all their cumulative impact

beyond the energy function concept that can be huge, and the term “dry water” coined by

von Neumann stuck to viscosity-neglect hydrodynamic studies as inadequate, see [1]. Also

since the 19th century, e.g. [2,3], it was exposed in mechanics and other fields the invalidity

of the concept due to the reaction forces of ideal non-holonomy, performing no work on

the system, as is the case of rigid bodies rolling without slipping on a surface. Recall also

a general symmetry argument provoked by the H-theorem of Boltzmann and showing the

Loschmidt’s fundamental paradox [4] of reversibility on the way to conform the real world

with the energy function concept.

Physics nowadays in line with quantum mechanics bridged to Lagrangian mechanics has

a commanding influence on both fundamental and applied research. It looks just the way

things are, but is heuristic and narrows the reach of thought about the energy and stable

matter in vast realm of statistical equilibria. This is what the present work is about. It

is based on the idea of complementary energies we introduced in [5] and now clarify. We

begin with outlining the validity domain of the traditional energy concept, then consider

the principles of complementary energies, dwell on things it opens up, and rest our case on

quantum physics.

2. The existence domain of energy function concepts

Let us think of energy concepts in terms of generalized thermodynamic potential com-

monly accepted in the study of phase transitions, transport through barriers, and many

other things. The generalized potential of a system relaxing in steady conditions to a den-
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sity distribution ρst connects to it by

ρst(z) = Ne−Φ(z), N−1 =
∫
e−ΦdΓ (1)

where the integral is over the volume Γ of system phase space variables z and the reversible

motion is on surfaces

Φ(z) = const. (2)

The properties of the system mainly depend then on the local properties of the minima of

Φ. Also, it gives insight from the observed symmetries of a physical system. An analogous

approach to systems under high frequency fields is in terms of the picture where the hf

field looks fixed or its effect is time-averaged. In all this, Eq. (1) can be viewed as merely

redefining the distribution ρst in terms of function Φ, whereas, taking this function as the

energy integral of reversible motion provides the physical basis of the theory, but implies

rigid constraints.

Commonly, going back to Boltzmann and Onsager, to mention a few, the constraints are

reasoned based on microscopical reversibility. It corresponds to detailed balance of transition

probabilities between each pair of system states in equilibrium. The balance of transition

probalities implies system descriptions within the framework of autonomous Fokker-Planck

equations and analysis, see [6], via division the system parameters into odd and even with

respect to time reversal, with a reserve on factors like magnetic field. In so doing the logic

of time reversal is model-bound, and the reserve rule can be easily broken, e.g., in nuclear

processes and where spin-orbit interactions are a factor, particularly near surfaces, interfaces,

dislocations. So, a problem arises even with this model-bound case.

A different approach to outlining the overall domain of generalized thermodynamic po-

tential validity was suggested in [5]. Its basis is in keeping with invariance under trans-

formations of variables. On doing so the energy integral of reversible motion implies the

invariance under univalent transformations z → Z, of Jacobian

| det{∂Zk(z, t)/∂zi}| = 1 (3)

where i, k run through all components of z and Z. Φ(z) (1) satisfies this condition, for

then not only ρdΓ is invariant (being a number) but also dΓ. The environment as a dif-

fusion/dissipation source for the system brings in another invariance. Connecting Φ to the

system’s energy function implies scaling this function in terms of environmental-noise energy
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levels. The energy scales set this way are fixed but must vary proportionally with the en-

ergy function in arbitrary moving frames Z = Z(z, t) to hold Φ invariant. Since the energy

function changes in moving frames, this constraint can hold only for the systems entrained

- carried along on the average for every system’s degree of freedom with the environment

causing irreversible drift and diffusion.

Also account must be taken where the limit of weak background noise poses as a structure

peculiarity – transition to modeling of evolution with possible irreversible drift without

regard to diffusion. This means motion along isolated paths. The entrainment constraint

then keeps its sense as the weak irreversible-drift limit. Such mechanics allows for the ideal

non-holonomic constraints that do not perform work on the system but reduce the number

of its degrees of freedom, which violates the desired invariance of Φ(z). Hence, the invariance

necessitates the domain of entrainment free of that, termed ideal entrainment or just ideal

below.

We have discussed all conditions on Φ(z), and the reasoning holds for any one-to-one

functions ρst(Φ). For the systems describable by a time-dependent density distribution

ρ(z, t), the adequacy of energy function formalism also requires the entrainment ideal. The

arguments used above for the systems of steady ρst(z) become applicable there with univalent

transformations of ρ(z, t) into t-independent distribution functions.

The converse is also true: the behaviors governed by a dressed (due to the environment)

Hamiltonian H(z, t) imply the entrainment ideal and the existence of a density distribution

ρ(z, t). The velocity function ż = ż(z, t) of underlying motion is then constrained by ż =

[z,H] with [, ] a Poisson bracket, so the divergence div ż = div[z,H] = 0 and div(żf) =

−[H, f ] for any smooth f(z, t). It implies, if a smooth distribution ρ(z, t) exists,

∂ρ/∂t = [H, ρ] (4)

and that ρ(z, t) satisfies Eq. (4) from given initial conditions and the boundary conditions

taken natural at |z| → ∞ (ρ and its derivatives vanish) to preserve the normalization∫
ρdΓ = 1, for all other constraints are embodied in H. Such solution to (4) cannot cease to

exist as smooth, unique and non-negative over the phase space of z where H(z, t) governs the

behaviors. The entrainment ideal there takes place since the solution turns into a function

ρ(H) in the interaction picture where H is t-independent. This completes the proof.

Thus, the necessary and sufficient conditions where the energy function concept is duly
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adequate to the evolution described by the distribution function of system states come down

to the entrainment ideal.

This theorem of [5] lays down the overall domain of energy function validity. It includes

the systems isolated or in thermodynamic equilibrium, as well as entrained in steady or un-

steady environments generally of non-uniform temperature or indescribable in temperature

terms so long as the diffusion, irreversible drift, and ideal nonholonomy can be neglected.

3. Incompleteness of energy function concepts

The concepts of energy as a function of system states give rise to the fundamental notion

of reversibility. But along comes the following dilemma:

On the one hand, the irreversible forcing generally cannot be consistently referred to smooth-

ing of reversible microscopy over irrelevant variables and random conditions. On the other,

insofar as the true physics of phenomena is perceived through the interactions given by energy

functions of states, so should be the physics of irreversible phenomena.

The approach to irreversiblity from microscopy can mislead in the question of both sta-

tistical and dynamical (over fast motion) averaging. First, it is impossible to come to the

irreversible behaviors from a many-body Hamiltonian system unless resorting to the methods

of averaging and truncations irreducible to the separation of variables within the framework

of canonical transformations. Secondly, the arising inaccuracy accumulates with time, which

is essential for the notion of energy as a conservative measure of the evolution in station-

ary conditions. Also the perception of myriad of outer influences, even treated within the

Hamiltonian dynamics as frequently alternating interactions, is possible only through av-

eraging, which practically cannot be presented as the exact averaging given by canonical

transformations, hence, leads to irreversible influences that may significantly accumulate for

long times.

The other way around, as the averaging in point is then to provide evolution to ideal

entrainment, it inevitably means relaxation towards a macro state of rest, hence, rigid

constraints following from nowhere, i.e., circular theories.

The formulated dilemma is inherent in the perception of energy exchange in terms of the

energy function concepts and brings in fundamental inexactness and incompleteness. There

is no other way to account for the energy exchange incompleteness but to integrate the
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concept with a tentative (statistical) measure of energy blur/relaxation rates. The more it

matters as the ideal entrainment as an asymptotic limit in the parameter space of modeling

is inherent in a boundary layer and intermittency where the limit trend can be deprived

of evidential force in the close vicinity of the ideal. Let us now go over to introducing the

principles and criteria of consistent energy measure that put the issue of dilemma by.

4. The whole energy measure and its vortex element

Let us agree on terms. The systems will be defined as describable by a smooth evolution

of the density distribution function ρ(z, t) of phase space z. z is a set of continuous variables

z = (x, p) - the generalized coordinates x = (x1, . . . xn) and conjugated moments p =

(p1, . . . pn) taken in neglect of the constraints breaking the energy function formalism; z

may include sets of normal mode amplitudes of waves in media. The smoothness of ρ(z, t)

will be understood to mean

∂ρ/∂t = −div(v̂ρ) (5)

with v̂ρ the 2n-vector flux of phase fluid at z, t; v̂ρ is a smooth functional of ρ. Eq. (5) turns

into the evolution equation for ρ(z, t) with v̂ treated as a proper operator that accounts for

all constraints on the phase flows under the boundary conditions taken natural for the z

components set unbound. Generally the constraints are non-local in z and non-anticipating

in t. Let us consider the conditions of stationary environment, when Eq. (5) is autonomous

and describes relaxation of systems to a stable distribution of ρ in response to perturbations.

In this general approach, a measurable property, and nonmeasurable are off physics,

presumes conservation of its measure judged by the solutions ρ(z, t) to Eq. (5), its Cauchy

problem as a function of t in space z. In our case this is the conservation of system energy

in outer stationary conditions. The general principles of work on the system and the law of

energy conservation, with the energy determined by the work, are to be taken as prime as

so the material world is perceived. This base fully and by far covers the basics given by the

notion of energy conservation of reversible processes, as shown below.

It is customary to formulate the principles of work in terms of isolated trajectories z =

(p, q) as functions of t without account of diffusion and retardation in v̂ independent of ρ.

The motion z(t) from an initial z(0) reduces then to delta-function ρ(z, t) = δ(z − z(t)) in
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(5) where v̂ is a function v = {vi(z)}, and is given by the set of equations

dzi/dt = vi(z), i = 1, . . . 2n. (6)

But already in this explicit mechanics the notion of energy as a function of system states

much narrows the conditions of energy conservation for the case. The conservation over

closed paths of system motion z(t) means∮
vidzi = 0 (7)

assumed summing over dummy indeces. The criterion (7) is satisfied for the ideal, for then

v is to be divergence-free. However, the equilibrium states to be stable require irreversibility

in the vicinity of such paths, that is div v 6= 0. Absorbing the energy means div v < 0. An

archetype example is Rayleigh dissipation function, then div v = k with k = const < 0, so

the irreversible contribution to the drift v represents viscous forces linear in system velocity

in terms of Lagrange variables of physical space. These forces disappear in the states of rest

and it realizes in the minima of potential forces of the system, a point or their set depending

on the potential shape.

The phenomenon of stable motion, rather than rest, in conditions of energy conservation,

is considered impossible in classics. Obviously, we are talking about the equilibrium phe-

nomena - steady motions governed by autonomous equations in conditions without supply

of energy. However, nothing contradicts to the principles of work in such conditions, if we

take into account that the sign of div v(z) may vary so that the work can be irreversibly

absorbed on some parts of motion z(t) and gained on other parts. The quadratic form vdz in

the regions of motion satisfying (7) where div v(z) 6= 0 then includes vortex forces, and the

work due to them depends on the path of motion, becomes not the function but a functional

of system states. The conserved energy as determined through the work over the whole

path of motion is thus a functional embodying vortex forces. For the systems described by

a retarded v̂, Eqs. (7) are integrodifferential and the existence conditions for such integral

energy measure diversify.

Certainly, the phenomenon of motion in point is negated if we associate the energy

conservation with the work on an imaginable Hamiltonian system, rather than a real, physical

system determinable by Eq. (5) of measurable parameters. The possibility to overrun the

narrow framework of energy as a function of system states much widens further with account
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of diffusion, which means nonlocality in z of action v̂ on ρ(z, t). For the general conditions

of modeling within Eq. (5) where

div(v̂ρ) = (div v̂)ρ+ v̂ gradρ, (8)

the criterion of energy conservation (7) extends into that the integral in (7) is replaced by

a multidimensional integral of v̂ρdΓ over the volume of steady phase fluid flows. For v̂ρ

modeled linear in ρ and not retarded, the limit (div v̂)ρ = 0 in the volume corresponds to

the ideal of total, over space z, self-compensation of irreversible drift forces and diffusion,

whereas, the stability requires such conditions near the compensation to be violated with

predominance of viscous forces; clearly the domain of that is limited. Diffusion contributes

significantly to irreversibly gaining the energy, as this creates mass new possibilities for

changing the sign of (div v̂)ρ, hence, for the equilibrium states of system motion and its

energy beyond customary notions of reversible physics phenomena.

So, the utmost wide energy measure of stable systems in the above-outlined general con-

ditions of work includes the integral energy that embodies the vortex forces of drift and

diffusion.

The measure extends much beyond the ideal, which is a low dimension limit where

(div v̂)ρ = 0, depending on the character of irreversible drift and diffusion. The energy

of equilibrium system off the ideal aria represents its ρ state of motion in t, and the motion

may be not necessarily slow, since the compensation of irreversible drift forces and diffusion

is broken locally also by emerging motion. For all that, the stability of motion states cor-

responds to the inseparable balance of all forcing - the reversible and irreversible drift and

diffusion for the case.

5. The canonical property of irreversible kinetics

The general kinetic equations (5) acquire the form

∂ρ/∂t = [H, ρ] + I (9)

where H = H(z, t) is, unlike in (4), an arbitrary Hamilton function, if we take for the term

I the expression

I = −div[(v̂ − ż)ρ] (10)
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with ż = [z,H] the local velocity of Hamiltonian phase flows governed by H. An important

feature of presentation (9) noted in [5] is

The canonical invariance of I holds as in as off the entrainment ideal, i.e. stands for all

drift and also diffusion.

To prove, note that a canonical (univalent) transformation z → Z implies not only the

invariance of ρ and Poisson brackets but also the constraint

∂Z(z, t)/∂t = [Z,G] (11)

with G a scalar function of z, t. Herein ∂Z(z, t)/∂t is the relative velocity of reference frame

Z at (z, t), so the function G(z, t) plays the role of a Hamiltonian governing this relative

motion. The canonical invariance of ∂ρ/∂t− [H, ρ] in (9) follows and, hence, of the I term

whatever its functional form may be. This formulation generalizes our theorem IV in [5a].

It follows important consequences.

In the domain of ideal, I reduces to a [H, ρ]-like Poisson bracket since the evolution is

then to be governed by a dressed Hamiltonian. Beyond the ideal, the entrainment theorem

implies that I is not reducible to a [H, ρ]-like bracket and cannot keep invariance, hence, both

the ∂ρ/∂t − [H, ρ] and [H, ρ] of (9) cease to be invariant in the process of actual evolution

for any choice of H(z, t).

In disregard for the evolution, the state of ρ at any given instant t = ti can be taken for

ideally entrained by fitting. Due to this and since ρ is assumed smooth in t, the effect of

the irreducibility of I and [H, ρ] to invariants is weak for t’s close to ti. So, it may seem

reasonable to judge about their figure of merit for not small t− ti by popular perturbation

methods of dynamical systems, e.g. [7]. But this insight is insufficient and fails in the

long run beyond the domain of ideal to match the future with the past. As the reliance on

such perturbation theories conforms to the trends of ρ in line with a dressed Hamiltonian,

it conduces to the belief in this energy function theory beyond its above-established rigid

constraints.

By virtue of the canonical feature, its consequences in point, the system’s behavior in

externally applied fields changes generally in a non-conservative way. It shows up vigorously

in systems under fields of high frequencies, e.g. laser optics, particularly near resonances,

including parametric and combinational. The averaged effect of hf fields in the lowest,

quadratic order in field amplitude results in static vortex forces along with strong forces of
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effective potential. Thereat, the quasi-steady states, fluctuations and stability of systems at

resonances appear quite different from what the theories of quasi-energy and generalized

thermodynamic potential prescribe. Various essential effects of this kind, their general

features and methods of analysis were elucidated in our work cited in [5a] (e.g. [8]).

6. Extended equilibrium and measurements

In the above, along with the new notion of energy, we have come to a new notion of

equilibrium states - its extension from the habitual stereotype of system states of rest to

the equilibrium states of motion that take place in an immensely wider area of autonomous

conditions. The conclusion is immediate from the equation (5) for irreversible kinetics with

∂ρ/∂t 6= 0 and allows for the stable states of fast motion. Importantly, the macromotion

in point relates to the physics of systems in equilibrium states in outer fairly stationary

conditions when the energy is conserved, rather than concerns non-equilibrium statistical

physics. Is there then a derogation from stationarity?

The question is not so academic as principal for the measurements and understanding

of the claimed principles. The stationarity for the case is the invariance of behaviors with

respect to time translation from the time of perturbation, and it is inherent as in the states

of rest as in the states of steady motion. The difference between the two displays itself in

comparing the temporal correlations between the pictures of steady distributions of ρ for

the system. Determining these correlations or the power spectra corresponding to them for

these or those forms of motion gives one an insight into the phenomena in point, including

the region of rest-motion transition. The approach within the framework of Eq. (8) or (9)

governs the trends already smoothed over frequently alternating influences on the system.

More detailed correlations are described by more detailed kinetics and energy measures; we

shall not dwell on that.

For the systems relaxing in stationary outer conditions to equilibrium distributions of

states close to the states of rest, in the sense of limit ∂ρ/∂t→ 0, we get in terms of Eq. (9)

[H, ρ] + I = 0. (12)

The energy of systems is then conserved with the branch I acting on a par with [H, ρ] in

jointly keeping the circulation and transformations of conserved energy. To similar trends
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we come for the energy of stable equilibrium states of fast motion in the picture of canonical

transformations where the steady ρ is roughly t-independent. It is clear that the conditions

of such energy circulation and transformations in systems include the whole domain of ideal,

but are not limited by it at all and can stretch beyond the ideal vastly.

While in the domain of ideal (whether Eq. (12) holds or not) the energy is a function

of system states given by a dressed Hamiltonian with its potential and kinetic energies,

both of regular and/or chaotic origin, the conserved energy of systems beyond the ideal

includes or comprises the energy of a different form, complementary to all those types given

by Hamiltonian, since stands for both reversible and irreversible drift forces and diffusion in

their inseparable balance. This is just our integral vortex energy of equilibrium states. It

is not related to the principles of detailed balance and habitual trends of relaxation, which

is to the minimum of energy as a function of systems’ states, hence, the trends of stability

and preference relations in phase transitions - all that based on the theory of generalized

thermodynamic potential.

7. On the macromotion and vortex energy criteria

Look first at a Brownian particle on a reflecting plate. Gravity tends to press the particle

down and chaotic influences of the environment keep it hopping on the plate in stationary

conditions. For the particle charged and placed in a field of a permanent magnet, its drift

arises across both the magnetic and gravity force fields. The drift modifies but not disappears

for the plate rolled into a closed pipe or box. The energy of steady drift is conserved, hence,

contains a vortex form not given by a function of the system states;. the same picture is for

a number of interacting charged particles between reflecting walls. We raised the issue in

[9] but established the point in [5].

It will be observed that there are many studies of various directed Brownian motion

phenomena, e.g. [10] and recent reviews [11-14]. Paradoxically, the conventional wisdom

relates the phenomena to non-equilibrium statistical physics. As it does, this is nothing else

but stable equilibrium states of systems and stored energy of integral vortex form previously

missed in equilibrium physics of sight.

Let us formulate a general criterion on this score, considering as before the systems

described by a distribution function in stationary outer conditions. For the case of stable
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ideal, the systems relax to the state of rest determined by a dressed Hamiltonian H(z) bound

from below, commuting with the generalized thermodynamic potential Φ(z), [H,Φ] = 0,

and being its monotonic function, for unambiguity. Thereat, the condition of vanishing

irreversible forcing on the average for every component i of variables z implies according to

(12) the following 2n constraints(
fi − dik

∂

∂zk
+ . . .

)
ρst(z) = 0 (13)

where f = {fi(z)} is the irreversible drift forces, d = {dik(z)} a symmetric non-negative

definite (for stability) matrix of diffusion and ellipsis stands for the higher order diffusion

terms of expansion of I into a series in ∂/∂z. As I is generally an integrodifferential form

in z, so the operator bracket of (13) is. The constraints of (13) generalize the conditions of

detailed balance.

Neglecting the higher order terms in the bracket, reduces Eq. (13) to the algebraic

fluctuation-dissipation relations

fi = −(dΦ/dH)dikżk (14)

with ż = [z,H] and dΦ/dH > 0. For the distribution ρst of Maxwell-Boltzmann form and

general Gibbs form, dΦ/dH = β is independent of H, which reduces (14) to

f = −βdż = −βd[z,H]. (15)

β−1 = Θ is the energy scale of absolute temperature whose meaning expounds the known

equipartition theorem: for every component of z (coordinate or momentum) whose contri-

bution to H reduces to a square term, say, k1(zj − k2)2 with k1 > 0 and k1, k2 independent

of zj but may depend on other components of z and t, its mean over the Gibbs statistics

comes to 〈k1(zj − k2)2〉 = Θ.

It is easily seen that the ρst taken a Gibbs rules out persistent currents since for any 〈żi〉,

a function of zi averaged over the phase subspace off zi, one gets on integrating by parts (no

summing over i in the integral)

〈żi〉 = N
∫

[zi,H]e−βH(dΓ/dzi) = 0 (16)

by virtue of natural boundary conditions for ρst(z). The theorem 〈żi〉 = 0 holds not only

for Gibbs but for the Bose-Einstein, Fermi-Dirac and other statistics, provided the system
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relaxes to a stationary distribution ρst(z) = ρst(H(z)) satisfying natural boundary conditions.

The conditions of all that are limited by the entrainment ideal. So the states of stable

macro-motion like persistent currents are thus a Litmus test of conserved vortex energy. A

distinctive feature of the phenomenon is the fact of relaxation and reverse in response to

perturbations.

Thereby, the paradigm of Brownian motion caused by eternal chaos as non-directional

extends to that of directional, and it concerns phase transitions. While any system at a

certain standing can be taken via fitting as ideally entrained, governed by an energy function

of its states, the theories of transition under a shift of parameters to a stable macromotion

beg a question whenever the emerging macromotion state is also treated as a state governed

so. The macromotion is then attributed to spontaneous symmetry breaking, topological

defects, and what-not, which is problematic as it implies the conditions (13) to be somehow

miraculously restored. Anyhow, in the end one faces the above theorem banning a stable

macromotion within this beaten path down-the-line.

In contrast to the essence of pattern formation as a process that makes the Cauchy

problem of kinetic equation (9) [even its quasi-static (∂/∂t → 0, not just ∂ρ/∂t = 0) limit

(12)] the corner stone of the theory of energy, as we do, the theory of phase transitions

in question makes the boundary value problem imposing the evolution trend given by the

energy function concept the corner stone. The imposition results in the geometrization

beauty of kinetics, but rules out the formation intrinsic to a stable non-entrained state in

equilibrium, hence, the macromotion and vortex energy.

8. Thermodynamic laws in the light of vortex energy

Let us look into equilibrium thermodynamics. It proceeds from the existence of internal

energy E of thermodynamic system as a function of external parameters a = {ak} and

temperature Θ so that the differential dE in space (a,Θ)

dE =
∂E

∂Θ
dΘ +

∂E

∂ak
dak = δQ+ δW (17)

expresses the first law by introducing the heat transfer Q as the difference between the

internal energy and the work on the systemW defined for any processes as purely mechanical,

for Θ fixed. For the processes to proceed the parameters are assumed to vary in time, but
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slowly - in the quasi-static limit |d(a,Θ)/dt| → 0. Whereas Q and W may freely depend

on the path chosen in (a,Θ) with δQ and δW not bound to be exact differentials, Eq. (17)

implies for any cyclic process ∮
δQ = −

∮
δW. (18)

Therein lays the principle of equivalence between the work and heat. The principle of first

law in the form (17) is tantamount to that of (18). This being for any closed paths in (a,Θ),

the vortex energy is thereby completely excluded.

Not only the first law appears to be the law of energy conservation bound to the framework

of energy a function of system states for the case, but also it implies, since the thermodynamic

equilibrium is treated as a stable state, relaxation to be exactly towards the minimum of

energy function of system states in terms of (a,Θ) without introducing any entropy function.

The second law of thermodynamics in this regard specifies the equation of system state,

its caloric-thermal relations - by assuming that the energy function is additive with respect

to the partition of system volume, a one-dimension external parameter, in independent small

parts. It best fits the ideal gas confined by rigid walls, is in line with Gibbs statistics of ρst,

and poses the energy E and forces Ak = −∂E/∂ak as the averages

E =
∫

He(ϕ−H)/ΘdΓ, (19)

Ak =
∫

(−∂H/∂ak)e
(ϕ−H)/ΘdΓ (20)

with

ϕ = −Θ lnN, N =
∫
e−H/ΘdΓ (21)

and the Hamiltonian H assumed a function of z and slowly varying parameters a but not Θ,

to avoid ambiguity. These equations show ϕ(a,Θ) as the Helmholtz free energy determining

the work of forces A = {Ak} and also the expression Θ∂ϕ/∂Θ as the binding energy function.

The entropy function, which is introduced in pure thermodynamics as S(a,Θ) =
∫

(δQ/Θ)

by postulating the existence of the integrating multiplier of δQ with 1/Θ, amounts by Eqs.

(19), (21) to

S = − ∂ϕ
∂Θ

=
E − ϕ

Θ
. (22)

So, all physics of Gibbsian thermodynamics is given on the base of energy function ϕ. Also

it shows entropy as not a self-sustained notion for that matter and that the second law, just

as the first law, is not reflective of vortex energy and its trends.
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The latter assertion is to be common to any entropy a function of system states treated

not only on the base of first law but also on the base of any its generalization within the

framework of entrainment ideal. Indeed, the entropy function and the generalized potential

must then commute, for the ideal entrainment holds where this potential for the system is

its energy integral. The violation of entropy conservation law would mean that the entropy

is not a function of parameters entering in the potential for the case. Moreover, the assertion

is also true in stationary conditions where the law of energy conservation holds beyond the

entrainment ideal, which is the area of vortex energy, for the opposite would then mean the

existence of the energy integral of the system there. As to the conservation law of entropy in

conditions where the energy of system is not conserved, the entropy function again cannot

be related to the energy of system, for such notion ceases to exist then. Thus, the notion of

entropy, however defined and by which statistics, does not add physics to the vortex energy.

Of various statistics linked to the second law, only Gibbs statistics assigns to the thermo-

dynamics the meaning given by the equipartition theorem. But at that, only a small area of

Gibbs statistics domain fits the thermodynamics, as particularly evident from the paragraph

with Eqs. (13)-(16). Namely, it implies H(z) to be bound from below and the additivity

postulate to limit its long-ranged interactions, and the interactions and parameters entering

into H should not depend on Θ and statistical factors – to preserve the very separating

principle between the balances of reversible and irreversible forcing and avoid ambiguity in

its definition.

In this light, the known Landau theorem [15], often referred to as the outright ban on

classical routes to persistent currents, should not be treated so. The theorem states that a

closed system of interacting parts in thermal equilibrium admits only uniform translation

and rotation as a whole. The proof proceeds from the system’s entropy S taken in the

form of a sum
∑
Si where each summand Si is a function of the difference Ei − P 2

i /2mi

between the total and kinetic energy only of part i, and the arguments and calculations do

not go beyond the first and second laws. So, it cannot stand for the outright ban in general.

The theorem does make allowances for a difference between the macromotion of parts in

thermodynamic equilibrium (otherwise, it is not a theorem), but the natural next step - to

the idea of vortex energy form critical for stable macromotion states in equilibrium - involves

freedom from entropy argument and was not made then a days.

The questions of this sort arise first of all in connection of stability of matter, its element
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based on Gibbsian thermodynamics for Coulomb systems. By the rigorous theory, see [16,17],

and mean-field theories going back to Debye, the screening of long-range Coulomb potential

1/r between moving charges of opposite sign at large distances r in matter makes the

potential short-ranged, so the free energy per unit volume is bound below and tends to

a finite limit as the system volume increases. Our point here is that the sufficient conditions

of such equilibrium states should include the stability with respect to the factor of vortex

energy, especially as the very screening arises due to the diffusion and relaxation of gradient

of charge-particle density under Coulomb field perturbations. The stability criterion (13)

then transits into that where f comprises both reversible and irreversible drift forces, which

is accessible for measurements.

The vortex form of energy has a direct bearing also on phenomena related to boundaries

and interfaces. The equilibrium thermodynamics of particle systems confined or self-confined

in a finite volume abstracts away of surface effects, and it may not realize because of vortex

energy. It fits into this group our example of Brownian particle and many systems with

surfaces, interfaces, dislocations, domain walls. It may concern, e.g., superconducting topo-

logical insulators. Recall also the instability of electron fluid suggested by Vlasov [10] by

analogy with the physics of capillary waves going back to Stokes and Rayleigh [18] - the

attraction of surfaces particles to the bulk of fluid gives a negative contribution to the po-

tential energy of ripple wave motion on the surface of fluid, so such states can evolve into a

steady ripple that transports mass and charges. Our point here - there is no other way for

the phenomenon to exist as robust in equilibrium but to imply stabilization due to stored

vortex energy.

9. General questions of vortex energy physics

The energy principles of interacting systems set forth represent a consistent causality

approach to the conservation of energy that departs from the conventional energy concept.

Both energy concepts, conventional and set forth, rest on the ability of systems to produce

work, but conventional proceeds from the notion of work determined by the function of sys-

tem states. The energy measure then implies the ideal entrainment, hence, corresponds to

the systems behaviors within the framework of boundary value problem imposing the condi-

tions of ideal. Unlikely, we proceed from the notion of work measurable by the evolution of
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distribution function of system states according to the Cauchy problem of kinetics governing

the evolution. The departure is thus from the physics of basically predetermined world to

that of real, diverse world where nothing happens by itself but depends on circumstances.

The difference is like transition from the world of integers to that of reals and deeper,

being on a functional level. Within the framework of the law of energy conservation given by

the function of system states, the states in equilibrium are isolated, determined on gratings,

for the transitions between each pair of states are determined by balance of reversible drift

forces and a separate balance of irreversible forces of drift and diffusion. Meanwhile, the

separation of balances should not be postulated, follows from nowhere and does not cover

all effect of irreversible forcing, and it generally matters no less to provide stability. The

system’s states are then not isolated, have open vicinities. So, it is important for the energy

as measure of forcing able to produce work to include the forces of whole drift and diffusion.

A self-sustained action of irreversible forcing, with diffusion or not, is behind this un-

conventional energy measure we came to and called integral vortex or just vortex. It is for

the first time that the energy measure incorporates the irreversible forcing. Its effect, as

evident from previous sections, can be crucial in clearing the hurdles of potential barriers in

autonomic conditions, so the stable states of macromotion can take place. Just as important

from a general physics standpoint, the conventional and vortex energies are complementary

forms comprising the total energy measure in equilibrium.

Thereat, we proceed from physics as science perceiving all phenomena exclusively through

the notion of energy and work on the basis of cause-effect relations. The notion of entropy,

as shown, adds no physics to the energy duality in point and has no relation to the vortex

energy form. The conventional form of energy is behind the states of rest and emerges

as a low-dimensional limit in the parameter space of vortex form generating the states of

macromotion. In all, it is all about stability in small and finite with regard to the vortex

forcing as the very issues of equilibrium states and inseparable balance are resolved through

its principles and criteria we formulated above in terms of kinetics.

The vortex energy of systems is obviously ubiquitous as inherent in the phenomena of

material world of stable macromotion states. This complementary energy being essentially

integral and of vortex nature characterizes behaviors that do not follow the principles of

equilibrium statistical mechanics and the first and second laws of thermodynamics. So the

existence domain of matter stability can as extend as shrink compared with the predictions
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of theory of energy as a function of system states. This provides also a wider insight into

Brownian motion as its unidirectionality becomes allowable. Besides Maxwell’s, a unidirec-

tional demon may fit for equilibrium.

10. Extension to relativistic and continuous systems

Just as the approach based on energy function concepts extends to incorporate general

relativity and also systems of infinite degree of freedom, so the approach based complemen-

tary energies does. To conform the energy function concept to the relativity conditions, one

starts off with an action integral ∫
L(x, ẋ)dt (23)

with a function L = L(x, ẋ) being the Lagrangian of the coordinates and velocities of the

system, and requires this action integral to be motion invariant. Passing from Lagrangian

to Hamiltonian involves then singling out one particular observer and making the formalism

refer to the time t for this observer. By analogy, our analysis set forth can be viewed so in the

limit of ideal entrainment, while beyond may include retarded terms - for v̂ modeled suitably.

The principle of least action δ(
∫
Ldt) = 0 yields the Lagrangian equations ṗi = ∂L/∂xi with

the momentum defined by

pi =
∂L

∂ẋi
(24)

and p = {pi} assumed usually independent functions of ẋ, but imposing relativistic con-

straints makes these momenta not independent functions of the velocities. The Hamiltonian

defined as H = piẋi−L then can still be made (being not uniquely determined) independent

of the velocities, which modifies the Hamiltonian equations of motion but can be written

concisely in the Poisson bracket formalism with H called the total Hamiltonian, see Dirac

[19]; in [9] one finds also its extension from the case of a finite number of degrees of freedom

i = 1, . . . , n to the case of their continually infinite number. The extension is by taking n

infinite, with all values of i in a continuous range. For the equation generalizing (24) to de-

fine the momenta, it is to be treated as a process of partial functional differentiation, which

is to vary the velocities by δẋi in the Lagrangian and then put δL =
∫
piδẋi as defining pi’s.

By analogy with this pattern, we come to desired extensions proceeding with the continu-

ity equations (4), (5) and others of previous sections but treating there the partial derivatives
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of density distributions in z as partial functional derivatives. This leads to evident exten-

sion of the theorems and other conclusions formulated above regarding the integral vortex

energy. At that, while the conventional theory of relativity is bound to the order of things

given by Lagrangian dynamics, the physics behind the complementary vortex energy, being

not bound so, may not comply to that theory in various aspects, e.g., Lorentz symmetry.

11. The vortex nature of quantum physics

The concept of vortex energy we established and clarified above within the framework

of classical physics description does not rely on any postulates of quantum physics, its

particle-wave notion, quantization, energy transfer by quanta. However, the two physics are

not complementary but competing. Whereas in outer stationary conditions the quantum

concept admits super currents in and of itself, from the standpoint of our complementary

energies all kinds of stable macromotion states then emerge due to the irreversible kinetics.

The same is true for all other non-classical features which we formulate as the following

energy theorem or principle of the classical footing of quantum physics

The observable quantum phenomena are exclusively of vortex nature - pertain to the existence

domain of vortex energy form.

Indeed, quantum theory implies existing an ideal where the evolution of system is de-

scribed by a wave function ψ(z, t) governed by a quantum Hamiltonian Ĥ, an Hermitian

operator having terms of non-commutativity bound to Planck’s constant. With the observ-

able values of Ĥ defined in this quantum ideal as the averages

〈Ĥ〉 =
〈
ψ
∣∣∣Ĥ(ẑ, t)

∣∣∣ψ〉 (25)

and the observable system’s properties defined via ψ by the rule (25) where Ĥ is replaced by

Hermitian operators Â associated with observables, the eigen spectrum of Ĥ is assigned the

observable energy measure. But the non-commutativity terms make this energy measure

different from that of given by a classical Hamiltonian. Accordingly, the behaviors governed

so acquire features unusual from that classical perspective. Thereby, in conditions of energy

conservation they fall into nothing else but the realm given by the integral vortex energy

measure.

The quantum ideal in point fits the observations perturbing the system in a way of
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transitions between its pure states. Beyond this ideal, the quantum phenomena must also

fall into the vortex-energy category, for the states of quantum system are then assumed to

be a mixture of pure states each given a statistical weight in the sense used in the classical

physics. The proof is immediate while reasoning in terms of density matrix as well as the

Feynman’s path integral approach.

So, all phenomena attributed to quantum physics represent classical irreversible phe-

nomena. It is not just one more interpretation, but basic - if to proceed from the fully

consistent theory of energy. To attribute the quantum phenomena to an uninterpretable

sort of reversible processes, constrained in the sense of Eq. (2), then turns out to be inade-

quate. This our conclusion is in marked contrast with the conventional wisdom. In-depth

quantum theories proceeding from research via Koopman-von Neumann approach [20,21],

path integral [22], and other methods are presently in intensive works of many researchers,

e.g. [23-26], but to find real, on the basis of energy measure for physical systems, classical

routes of quantum phenomena, one then needed to come up to, or rely on the general idea

of complementary energy measures substantiated in the present work.

The principle of the classical footing of quantum physics we claim is not obligatory an

equal footing, for the existence domain of the concept called quantum is unknown - a funda-

mental problem of quantum mechanics is how a quantum state is protected against the state

collapse from a measuring apparatus. Stabilization of states is required, and we see no other

way based on the notion of energy to that but to identify it with the integral vortex energy.

In fact, it is on this energy basis the very existence of quantum physics becomes established

rigorously, while its previous support was by the rule of thumb. The Einstein-Podolsky-

Rosen paradox and the quantum entanglement and quantum nonlocality as measured by

Bell test experiments are then appear resolved, but with the clue in point. A novel in-

sight and possibly paths of research open up in quantum developments of thermodynamics,

electrodynamics, gravity etc so far as they are based on quantum mechanics.

Unlike the conventional approach, we do not augment validity to the quantum concept by

resorting to the concept of entropy and a semi-classical approach to the irreversible kinetics,

but acquire it exclusively due to this kinetics. The principle of complementary energies with

its vortex energy covers all aspects of that in a self-sustained way in terms of measurable

kinetics adequate to the reality of inseparable balance between the reversible and irreversible

forcing. In this light, the established principles of integral vortex energy inherent in stable
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